
2024/12/02 09:59 1/2 FS_FILELOCKS

osFree wiki - https://osfree.org/doku/

FS_FILELOCKS

Purpose

Locks and/or unlocks a range (record) in a opened file.

Calling Sequence

int far pascal FS_FILELOCKS(psffsi, psffsd, pUnLockRange, pLockRange,
timeout,
 flags)

struct sffsi far * psffsi;
struct sffsd far * psffsd;
struct filelock far * pUnLockRange;
struct filelock far * pLockRange;
unsigned long timeout;
unsigned long flags;

Where

psffsi is a pointer to the file-system-independent portion of an open file instance.

psffsd is a pointer to the file-system-dependent portion of an open file instance.

pUnLockRange is a pointer to a filelock structure, identifying the range of the file to be unlocked. The
filelock structure has the following format:

struct filelock {
 unsigned long FileOffset; /* offset where the lock/unlock begins */
 unsigned long RangeLength; /* length of region locked/unlocked */
}

If RangeLength is zero, no unlocking is required.

pLockRange is a pointer to a filelock structure, identifying the range of the file to be locked. If
RangeLength is zero, no locking is required.

timeout is the maximum time in milliseconds that the requester wants to wait for the requested
ranges, if they are not immediately available.

flags is the bit mask which specifies what actions are to taken:

SHARE Bit 0 on indicates other processes can share access to this locked range. Ranges with SHARE
bit on can overlap.

SHARE Bit 0 off indicates the current process has exclusive access to the locked range. A range with
the SHARE bit off CANNOT overlap with any other lock range.

ATOMIC Bit 1 on indicates an atomic lock request. If the lock range equals the unlock range, an
atomic lock will occur. If the ranges are not equal, an error will be returned.

All other bits (2-31) are reserved and must be zero.

Last update: 2014/05/12 23:41 en:ibm:ifs:routines:filelocks https://osfree.org/doku/doku.php?id=en:ibm:ifs:routines:filelocks

https://osfree.org/doku/ Printed on 2024/12/02 09:59

Remarks

This entry point was added to support the 32-bit DosSetFileLocks API.

If the lock and unlock range lengths are both zero, an error, ERROR_LOCK_VIOLATION will be returned
to the caller. If only a lock is desired, pUnLockRange can be NULL or both FileOffset and RangeLength
should be set to zero when the call is made. The opposite is true for an unlock.

When the atomic bit is not set, the unlock occurs first then the lock is performed. If an error occurs on
the unlock, an error is returned and the lock is not performed. If an error occurs on the lock, an error
is returned and the unlock remains in effect if one was requested. If the atomic bit is set and the
unlock range equals the lock range and the unlock range has shared access but wants to change the
access to exclusive access, the function is atomic. FSDs may not support atomic lock functions. If
error ERROR_ATOMIC_LOCK_NOT_SUPPORTED is returned, the application should do an unlock and
lock the range using nonatomic operations. The application should also be sure to refresh its internal
buffers prior to making any modifications.

Closing a file with locks still in force causes the locks to be released in no defined order.

Terminating a process with a file open and having issued locks on that file causes the file to be closed
and the locks to be released in no defined order.

The figure below describes the level of access granted when the accessed region is locked. The
locked regions can be anywhere in the logical file. Locking beyond end-of-file is not an error. It is
expected that the time in which regions are locked will be short. Duplicating the handle duplicates
access to the locked regions. Access to the locked regions is not duplicated across the DosExecPgm
system call. The proper method for using locks is not to rely on being denied read or write access, but
attempting to lock the region desired and examining the error code.

Locked Access Table

Action Exclusive Lock Shared Lock
Owner read Success Success
Non-owner read Return code, not block Success
Owner write Success Return code, not block
Non-owner write Return code, not block Return code, not block

The locked access table has the actions on the left as to whether owners or non-owners of a file do
either reads or writes of files that have exclusive or shared locks set. A range to be locked for
exclusive access must first be cleared of any locked subranges or locked any locked subranges or
locked overlapping ranges.

From:
https://osfree.org/doku/ - osFree wiki

Permanent link:
https://osfree.org/doku/doku.php?id=en:ibm:ifs:routines:filelocks

Last update: 2014/05/12 23:41

https://osfree.org/doku/
https://osfree.org/doku/doku.php?id=en:ibm:ifs:routines:filelocks

	[FS_FILELOCKS]
	[FS_FILELOCKS]
	FS_FILELOCKS

