2025/07/13 19:45 1/3 MVM/DOS/Win16 personality

MVM/DOS/Winl6 personality

This is an infrastructure for running VM's with modified/unmodified OS's

MVM server

The MVM server is a central server of the MVM personality - the infrastructure for running multiple
virtual machines on top of L4 microkernel. It is almost separate from 0OS/2 personality, but can be
controlled by 0OS/2 programs via DosOpenVDD/DosCloseVDD/DosRequestVDD API's.

So, the MVM server exposes some interfaces to other OS personalities to be controlled by them. Also,
it starts VM's, which are executed in the context of a VM monitor, running a guest OS (DOS, for
example). The VM environment is defined by the VDD's " loaded. The MVM server loads VDD's, which
are a kind of plugins.

Virtual Device Drivers (VDD's)

A VDD is like a plugin for MVM Server, and it can communicate with outside programs via request API
(DosRequestVDD for OS/2 programs). On the other side, from the VM point of view, the VDD emulates
some BIOS services/Option ROM's, a hardware devices of guest platform. It installs interrupt handlers,
catches 1/0O ports or MMIO registers accesses from inside the guest OS. A VDD implements its services
based on VDD helpers API, served by the MVM server. It exports helper API's for VDD's via MVDM.DLL.

Originally, the MV(D)M were used to emulate a 8086 machine with BIOS and DOS/Win 3.1. But now it
is a trend for many OS'es to have the kernel virtual machines, like kvm in Linux or VirtualPC in WinNT.
Our MVM personality is our solution of the same kind, but it not so monolithic like gemu/kvm - it
decomposed to several parts, in best IBM solutions design traditions. The VDD's are like plugins for
MVM server, allowing to extend the MVM environment. They're loadable modules (DLL's).

Also, as we're told previously, to share the screen with OS/2 apps and apps of other personalities, IBM
created the solution of “Seamless Win0OS/2". This is the possibility for Win 3.1 programs to share the
same screen with OS/2 PM ones.

This is done with a special VDD's, like VVIDEO (VVGA, VSVGA, etc) implementiing a video mode
support in a DOS window (or fullscreen). The DOS window is implemented as a special DLL
(pmvdmp.dll) which was loaded by PM. It communicates with a VM via DosRequestVDD and
implement the video functions via GPI calls (for windowed mode, so it is a PM application, based on
VIO Shield (pmviop.dll), working via BVH drivers, like bvhwndw.dll for windowed 0S/2 and DOS
sessions, or bvhvga.dll+bvhsvga for fullscreen 0OS/2 or DOS sessions).

For windowed WinQOS/2 sessions, it existed the solution of using a so-called PM shield (seamless.dll)
and Win0S/2 shield (winsheld.exe). The 1st one is an “avatar” of Windows application in 0S/2 PM
world. And vice versa, the Win0S/2 shield is a representative of a PM app in WinOS/2 world.

Also, the second solution exists, based on GRADD video driver model. It works via VVMI (vmanwin.sys
in the Intel 0S/2). It is the VDD related to the communication of windows video driver (ifgdi2vm.drv
for fullscreen, isgdi2vm.drv for seamless mode) with GRADD's VMAN . The special thread in VMAN
polls the VVMI driver to communicate with Windows driver. So, the Windows driver is a generic one,

osFree wiki - https://ftp.osfree.org/doku/


https://ftp.osfree.org/doku/doku.php?id=en:docs:os2:modules:mvdm

Last update: 2024/05/08 02:05 en:docs:mvm:index https://ftp.osfree.org/doku/doku.php?id=en:docs:mvm:index&rev=1715133913

but it communicates with a “real” driver. This results in WinOS/2 and 0S/2 PM shared the same screen
using access to a common video driver. See the GRADD-related section for more details about
multiple graphics engines sharing the same screen/video driver.

Virtual Machine Monitor

The VMM ? is a program implementing the environment of guest hardware platform, with help of
VDD's. It maintains the contexts of all VM's, and handles the traps redirecting them to the needed
VDD, loads the IST * for different processor instruction sets, utilizes the hardware emulation features
of the CPU, like VM86, AMD SVM, Intel VT-x etc.

It maintains the address space layout of a VM application, loads a firmware (for BIOS, the SeaBIOS can
be used) and DOS emulation kernel.

The DOS emulation kernel (doskrnl)

The DOS emulation kernel is a special rehosted DOS kernel working via 0S/2 (or PN ) services. For
example, file system API's of int 21h are implemented via OS/2 (or PN) file API's. Access to 0S/2 API's
done via SVC API (supervisor call?) which is trap of HLT instruction followed by call number and
inverted call number. Also DOSKRNL provides MVM specific APl for DOS applications. See DOSKRNL
documentation for more info. It is not required to use DOS emulation kernel. Standard DOS kernel
(FreeDOQS, for example) can be used, but access to host file systems will be limited.

Instruction Set Translator (IST)
The IST is a DLL, emulating the instructions of Guest hardware via Host CPU instructions. It exports a
set of entry points, each corresponding the emulated instruction.

The similar component exist in QEMU - but it is linked statically with the emulator binary.

VM86 on Intel, and Hardware-assisted virtualization

Some processors implement special compatibility modes (VM86 allows creation of special task in
protected mode, which emulates a virtual i8086 processor) or special instruction to assist the Virtual
Machine Monitors creation. (Like “hypercall” to change context to a hypervisor, to execute its service
and exit “hypervisor” mode). Also, the very new processors implement the IOMMU (a hardware
support for sharing a hardware).

These extensions can be used to run unmodified 0S'es on top of a hypervisor (it is supported in newer
versions of Xen, VBox, VMWare, VPC).

Microkernels as Hypervisors

Microkernels and Hypervisors are very similar things. Microkernels implement similar features. For
example, the Fiasco.OC microkernel supports SVM and VT-x and allows to run unmodified Linux in

https://ftp.osfree.org/doku/ Printed on 2025/07/13 19:45


https://ftp.osfree.org/doku/doku.php?id=en:docs:mvm:api
https://ftp.osfree.org/doku/doku.php?id=en:docs:kernel:doskrnl

2025/07/13 19:45 3/3 MVM/DOS/Win16 personality

very thin VM's. This feature can be utilized in our MVM personality too.

Other kernels

It is possible to rehost other kernels, like CP/M-86, to MVM enviroment. It can be achieved via SVC
interface,

API

e SVC API
e BIOS API

1)

Virtual Device Drivers
2)

Video Manager
3)

Virtual Machine Monitor
4)

Instruction Set Translator
5)

Personality Neutral

From:
https://ftp.osfree.org/doku/ - osFree wiki

Permanent link:
https://ftp.osfree.org/doku/doku.php?id=en:docs:mvm:index&rev=1715133913

Last update: 2024/05/08 02:05

osFree wiki - https://ftp.osfree.org/doku/


https://ftp.osfree.org/doku/doku.php?id=en:docs:mvm:api
https://ftp.osfree.org/doku/doku.php?id=en:docs:bios:api
https://ftp.osfree.org/doku/
https://ftp.osfree.org/doku/doku.php?id=en:docs:mvm:index&rev=1715133913

	[MVM/DOS/Win16 personality]
	MVM/DOS/Win16 personality
	MVM server
	Virtual Device Drivers (VDD's)
	Virtual Machine Monitor
	The DOS emulation kernel (doskrnl)
	Instruction Set Translator (IST)
	VM86 on Intel, and Hardware-assisted virtualization
	Microkernels as Hypervisors
	Other kernels
	API



